A new family of facet defining inequalities for the maximum edge-weighted clique problem

نویسنده

  • Franklin Djeumou Fomeni
چکیده

This paper considers a family of cutting planes, recently developed for mixed 0-1 polynomial programs and shows that they define facets for the maximum edge-weighted clique problem. There exists a polynomial time exact separation algorithm for these inequalities. The result of this paper may contribute to the development of more efficient algorithms for the maximum edge-weighted clique problem that use cutting planes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New facets and a branch-and-cut algorithm for the weighted clique problem

We consider a polyhedral approach to the weighted maximal b-clique problem. Given a nodeand edge-weighted complete graph the problem is to find a complete subgraph (clique) with no more than b nodes such that the sum of the weights of all nodes and edges in the clique is maximal. We introduce four new classes of facet defining inequalities for the associated bclique polytope. One of these inequ...

متن کامل

The clique partitioning problem: Facets and patching facets

The clique partitioning problem (CPP) can be formulated as follows: Given is a complete graph G = (V, E), with edge weights wij ∈ R for all {i, j} ∈ E. A subset A ⊆ E is called a clique partition if there is a partition of V into nonempty, disjoint sets V1, . . . , Vk , such that each Vp (p = 1, . . . ,k) induces a clique (i.e., a complete subgraph), and A = ∪ p=1 {{i, j}|i, j ∈ Vp , i ≠ j}. Th...

متن کامل

An extended approach for lifting clique tree inequalities

We present a new lifting approach for strengthening arbitrary clique tree inequalities that are known to be facet defining for the symmetric traveling salesman problem in order to get stronger valid inequalities for the symmetric quadratic traveling salesman problem (SQTSP). Applying this new approach to the subtour elimination constraints (SEC) leads to two new classes of facet defining inequa...

متن کامل

Facets of the Linear Ordering Polytope: a unification for the fence family through weighted graphs ⋆

The binary choice polytope appeared in the investigation of the binary choice problem formulated by Guilbaud (1953) and Block and Marschak (1960). It is nowadays known to be the same as the linear ordering polytope from operations research (Grötschel, Jünger and Reinelt, 1985). The central problem is to find facet-defining linear inequalities for the polytope. Fence inequalities constitute a pr...

متن کامل

The facial structure of the clique partitioning polytope

The clique partitioning problem (CPP) can be formulated as follows. Given is a complete graph G = (V; E), with edge weights w ij 2 R for all fi; jg 2 E. A subset A E is called a clique partition if there is a partition of V into non-empty, disjoint sets V 1 S k p=1 ffi; jgji; j 2 V p g. The weight of such a clique partition A is deened as P fi;jg2A w ij. The problem is now to nd a clique partit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017